Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Oct;49(4):820-38.

Missense mutations and evolutionary conservation of amino acids: evidence that many of the amino acids in factor IX function as "spacer" elements

Affiliations

Missense mutations and evolutionary conservation of amino acids: evidence that many of the amino acids in factor IX function as "spacer" elements

C D Bottema et al. Am J Hum Genet. 1991 Oct.

Abstract

We report 31 point mutations in the factor IX gene and explore the relationship between the level of evolutionary conservation of an amino acid and the probability of a mutation causing hemophilia B. From our total sample of 125 hemophiliacs and from those reported by others, we identify 95 independent missense mutations, 94 of which occur at amino acids that are evolutionarily conserved in the available mammalian factor IX sequences. The likelihood of a missense mutation causing hemophilia B depends on whether the residue is also conserved in the factor IX-related proteases: factor VII, factor X, and protein C. Most of the possible missense mutations in generically conserved residues (i.e., those conserved in factor IX and in all the related proteases) should cause disease. In contrast, missense mutations in factor IX-specific residues (i.e., those conserved in human, cow, dog, and mouse factor IX but not in the related proteases) are sixfold less likely to cause disease. Missense mutations at nonconserved residues are 33-fold less likely to cause disease. At least three models are compatible with these observations. A comparison of sequence alignments from four and nine species of factor IX and an examination of the missense mutations occurring at CpG residues suggest a model in which most residues fall on opposite ends of a spectrum. In about 40% of residues, virtually any missense mutation in a minority of the residues will cause disease, while virtually no missense mutations will cause disease in most of the remaining residues. Thus, many of the residues in factor IX are spacers; that is, the main chains are presumably necessary to keep other amino acid interactions in register, but the nature of the side chain is unimportant.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Nature. 1964 Apr 11;202:147-52 - PubMed
    1. Am J Hum Genet. 1990 Aug;47(2):202-17 - PubMed
    1. Genomics. 1991 Aug;10(4):1093-6 - PubMed
    1. Am J Hum Genet. 1990 Nov;47(5):835-41 - PubMed
    1. Nucleic Acids Res. 1990 Nov 25;18(22):6731-2 - PubMed

Publication types

LinkOut - more resources