Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Oct 8;30(40):9601-7.
doi: 10.1021/bi00104a006.

Involvement of the carboxy-terminal residue in the active site of the histidine-containing protein, HPr, of the phosphoenolpyruvate:sugar phosphotransferase system of Escherichia coli

Affiliations

Involvement of the carboxy-terminal residue in the active site of the histidine-containing protein, HPr, of the phosphoenolpyruvate:sugar phosphotransferase system of Escherichia coli

J W Anderson et al. Biochemistry. .

Abstract

Histidine-containing protein, HPr, of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system has an active site that involves His-15, which is phosphorylated to form a N delta 1-P-histidine, Arg-17, and the carboxy-terminal residue Glu-85. Mutant HPrs with alterations to the three C-terminal residues, Glu-85, Leu-84, and Glu-83, were produced by site-directed mutagenesis. The properties of these mutants were assessed by kinetic analysis of enzyme I, enzyme IImannose, enzyme IIN-acetylglucosamine, and enzyme IImannitol, and the phosphohydrolysis properties of the HPr mutants. The results show that it is the C-terminal alpha-carboxyl of Glu-85 that is involved in the active site, and this involvement may be restricted to the phosphoryl donor action of HPr. The contribution of this alpha-carboxyl group is modest as the deletion of Glu-85 resulted in the reduction of the enzyme II activity (kcat/Km) to about 33%. Removal of both Glu-85 and Leu-84 yields an HPr that is an impaired substrate of both the enzyme I and enzyme II reactions. Glu-83 appears to have no role in the active site.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms