Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007;40(5):1066-72.
doi: 10.1016/j.jbiomech.2006.04.009. Epub 2006 Jun 27.

Prediction of summation in incompletely fused tetanic contractions of rat muscle

Affiliations

Prediction of summation in incompletely fused tetanic contractions of rat muscle

Brian R Macintosh et al. J Biomech. 2007.

Abstract

Summation is the accumulating contractile force resulting from sequential activations applied to a muscle without sufficient interval to permit complete relaxation. The purpose of this study was to evaluate summation in the rat medial gastrocnemius muscle, and to determine if the contractile responses during summation could be predicted from the relationship between force and activation pattern. In the first part of this study, the consistency of summation in the rat gastrocnemius muscle was assessed and prediction equations were derived. The second part compared predicted summation with actual contractions obtained in a new set experiments. Summation was assessed by calculation of the contractile response, per stimulation, for up to five stimulating pulses at these frequencies: 20, 40, 60 and 80Hz. This was done by subtraction of the force transient for j-1 pulses of stimulation (where j=1-5 pulses) from the force response with j pulses of stimulation. Each of these force differences was evaluated for peak rate of force development, contraction time and half-relaxation time. Contraction and half-relaxation times changed by only a small magnitude from values obtained for the twitch. Peak rate of force development was proportional to the active force for all force transients obtained by subtraction. The force per activation increased from the first to the fifth stimulus, and was dependent on interpulse delay. In the second series of experiments, the predicted force was related to the actual force for brief tetanic contractions at 40, 50 and 60Hz (r(2)=0.875). These experiments demonstrate that the force response to sequential activations is consistent and predictable. Summation can be predicted, knowing only the amplitude of the twitch contraction and the relationship between delay and force for each activating stimulus.

PubMed Disclaimer

Publication types

LinkOut - more resources