Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Oct 21;242(4):890-9.
doi: 10.1016/j.jtbi.2006.05.012. Epub 2006 May 20.

Dynamics, stability and inheritance of somatic DNA methylation imprints

Affiliations

Dynamics, stability and inheritance of somatic DNA methylation imprints

Laura B Sontag et al. J Theor Biol. .

Abstract

Recent research highlights the role of CpG methylation in genomic imprinting, histone and chromatin modification, transcriptional regulation, and 'gene silencing' in cancer development. An unresolved issue, however, is the role of stable inheritance of factors that manage epigenetic imprints in renewing or expanding cell populations in soma. Here we propose a mathematical model of CpG methylation that is consistent with the cooperative roles of de novo and maintenance methylation. This model describes (1) the evolution of methylation imprints toward stable, yet noisy equilibria, (2) bifurcations in methylation levels, thus the dual stability of both hypo- and hypermethylated genomic regions, and (3) sporadic transitions from hypo- to hypermethylated equilibria as a result of methylation noise in a finite system of CpG sites. Our model not only affords an explanation of the persistent coexistence of these two equilibria, but also of sporadic changes of site-specific methylation levels that may alter preset epigenetic imprints in a renewing cell population.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources