Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Jul-Aug;19(4):758-63.

Aldrin epoxidation. Catalytic potential of lipoxygenase coupled with linoleic acid oxidation

Affiliations
  • PMID: 1680652

Aldrin epoxidation. Catalytic potential of lipoxygenase coupled with linoleic acid oxidation

A K Naidu et al. Drug Metab Dispos. 1991 Jul-Aug.

Abstract

Epoxidation of aldrin was studied using highly purified soybean lipoxygenase in the presence of linoleic acid. Dieldrin, the primary stable reaction product, was quantified by electron-capture gas chromatography. The oxidation of aldrin to dieldrin was dependent on the concentration of linoleic acid, aldrin, and enzyme. The epoxidation was linear with time and exhibited a pH optimum of 7.4. The optimal conditions to observe maximum enzyme velocity included the presence of 0.25 mM linoleic acid, 200 microM aldrin, and 20 nM enzyme. Lipoxygenase inhibitors nordihydroguaiaretic acid, phenidone, 5,8,11-eicosatriynoic acid, and 5,8,11,14-eicosatetraynoic acid significantly inhibited epoxidation in a dose-dependent manner. Catalytic potential of lipoxygenase as expressed in terms of its turnover numbers was approximately 4.0 nmol/min/nmol of enzyme, and it appears that lipoxygenase is up to 20 times a better catalyst of aldrin epoxidation than cytochrome P-450. These results suggest that lipoxygenase, which is widely distributed in plants and animals, may represent yet another important pathway for epoxidation of aldrin.

PubMed Disclaimer

Similar articles

Cited by

Publication types