Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 May 17;197(2-3):201-7.
doi: 10.1016/0014-2999(91)90522-r.

Effect of azelastine on platelet-activating factor and antigen-induced pleurisy in rats

Affiliations

Effect of azelastine on platelet-activating factor and antigen-induced pleurisy in rats

M C Lima et al. Eur J Pharmacol. .

Abstract

The interference of azelastine with pleurisy induced by antigen was investigated in actively sensitized rats. The antigenic challenge (ovalbumin, 12 micrograms/cavity) caused early plasma leakage, which peaked within 4 h, accompanied by intense neutrophil infiltration. Pleural exudate decayed 24 h after antigen provocation, when a long-lasting increase in the number of resident eosinophils was observed. Oral pretreatment with azelastine (1-10 mg/kg) dose dependently inhibited the vasopermeation (ED50 = 4.2 mg/kg) and reduced the pleural exudate (ED50 = 6.8 mg/kg) induced by the antigen. In contrast, azelastine (10 mg/kg) failed to modify the neutrophil influx observed at 4 h and the eosinophil accumulation detected at 24 h. Azelastine was also effective against rat pleurisy induced by either platelet-activating factor (PAF-acether), histamine or serotonin. It reduced exudation and the increase in the number of mononuclear cells, neutrophils and eosinophils observed 6 h after PAF-acether. Nevertheless, antagonism of PAF-acether may not be relevant to the inhibition observed in the present model of allergic pleurisy, as the inhibition was refractory to three distinct PAF-acether receptor antagonists. In contrast, like azelastine, the histamine H1 receptor antagonist meclizine and the dual histamine and serotonin receptor antagonist cyproheptadine blocked antigen-induced exudation and failed to interfere with cell influx. We conclude that the anti-exudatory activity of oral azelastine on antigen-induced pleurisy is consistent with it exerting direct effects against vasoactive amines, but is not related to an effect against leucocyte infiltration nor to its ability to inhibit PAF-acether.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources