Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Aug;17(8):2127-35.
doi: 10.1681/ASN.2006030205. Epub 2006 Jun 28.

Identification and functional characterization of a new human kidney-specific H+/organic cation antiporter, kidney-specific multidrug and toxin extrusion 2

Affiliations

Identification and functional characterization of a new human kidney-specific H+/organic cation antiporter, kidney-specific multidrug and toxin extrusion 2

Satohiro Masuda et al. J Am Soc Nephrol. 2006 Aug.

Abstract

A cDNA coding a new H+/organic cation antiporter, human kidney-specific multidrug and toxin extrusion 2 (hMATE2-K), has been isolated from the human kidney. The hMATE2-K cDNA had an open reading frame that encodes a 566-amino acid protein, which shows 94, 82, 52, and 52% identity with the hMATE2, hMATE2-B, hMATE1, and rat MATE1, respectively. Reverse transcriptase-PCR revealed that hMATE2-K mRNA but not hMATE2 was expressed predominantly in the kidney, and hMATE2-B was ubiquitously found in all tissues examined except the kidney. The immunohistochemical analyses revealed that the hMATE2-K as well as the hMATE1 was localized at the brush border membranes of the proximal tubules. HEK293 cells that were transiently transfected with the hMATE2-K cDNA but not hMATE2-B exhibited the H+ gradient-dependent antiport of tetraethylammonium (TEA). Transfection of hMATE2-B had no affect on the hMATE2-K-mediated transport of TEA. hMATE2-K also transported cimetidine, 1-methyl-4-phenylpyridinium (MPP), procainamide, metformin, and N1-methylnicotinamide. Kinetic analyses demonstrated that the Michaelis-Menten constants for the hMATE2-K-mediated transport of TEA, MPP, cimetidine, metformin, and procainamide were 0.83 mM, 93.5 microM, 0.37 mM, 1.05 mM, and 4.10 mM, respectively. Ammonium chloride-induced intracellular acidification significantly stimulated the hMATE2-K-dependent transport of organic cations such as TEA, MPP, procainamide, metformin, N1-methylnicotinamide, creatinine, guanidine, quinidine, quinine, thiamine, and verapamil. These results indicate that hMATE2-K is a new human kidney-specific H+/organic cation antiporter that is responsible for the tubular secretion of cationic drugs across the brush border membranes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources