Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1975 May;54(1):185-94.
doi: 10.1111/j.1432-1033.1975.tb04128.x.

Iron-sulfur components of succinate dehydrogenase: stoichiometry and kinetic behavior in activated preparations

Free article

Iron-sulfur components of succinate dehydrogenase: stoichiometry and kinetic behavior in activated preparations

H Beinert et al. Eur J Biochem. 1975 May.
Free article

Abstract

Extensively or completely activated preparations of beef heart succinate dehydrogenase have been investigated by electron paramagnetic resonance (EPR) techniques at 6 to 97 K. Reductive titrations with dithionite and rapid kinetic studies were performed with various types of soluble and membrane-bound preparations of the enzyme. The following components were detected and their behavior analyzed: a free radical, presumably arising from the covalently bound flavin on reduction, two iron-sulfur centers of the ferredoxin type, the signals of which appear on reduction, and a highpotential iron-sulfur component, detectable in the oxidized state. The high-potential component was only detected in complex II and inner-membrane preparations. This component and one of the ferredoxin-type centers were present in amounts close to stoichiometric with the flavin and were reduced by substrate. The other ferredoxin-type center was present in amounts between 0.1 and 0.5 times that of the flavin and was reduced only by dithionite. Of the components reduced by succinate, however, only a fraction (up to 50% of the high-potential iron-sulfur center and 40-60% of the ferredoxin-type iron-sulfur center) was reduced within the turnover time of the enzymes; In complex II not more than about 10% of the flavin appeared in the semiquinone form at any time. Soluble, purified preparations behaved similarly except that the high-potential component was nearly or completely absent and extensive accumulation of the free radical occurred (up to 70 to 80% of the flavin) in titration and kinetic experiments. No significant difference was observed between the rates of semiquinone formation and the reduction of the ferredoxin-type or high-potential centers by the substrate. Also no qualitative differences in the properties studied in this work became apparent between prepatations containing 4 or 8 iron atoms, respectively.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources