Sequence analysis and organization of the Neodiprion abietis nucleopolyhedrovirus genome
- PMID: 16809301
- PMCID: PMC1489044
- DOI: 10.1128/JVI.00187-06
Sequence analysis and organization of the Neodiprion abietis nucleopolyhedrovirus genome
Abstract
Of 30 baculovirus genomes that have been sequenced to date, the only nonlepidopteran baculoviruses include the dipteran Culex nigripalpus nucleopolyhedrovirus and two hymenopteran nucleopolyhedroviruses that infect the sawflies Neodiprion lecontei (NeleNPV) and Neodiprion sertifer (NeseNPV). This study provides a complete sequence and genome analysis of the nucleopolyhedrovirus that infects the balsam fir sawfly Neodiprion abietis (Hymenoptera, Symphyta, Diprionidae). The N. abietis nucleopolyhedrovirus (NeabNPV) is 84,264 bp in size, with a G+C content of 33.5%, and contains 93 predicted open reading frames (ORFs). Eleven predicted ORFs are unique to this baculovirus, 10 ORFs have a putative sequence homologue in the NeleNPV genome but not the NeseNPV genome, and 1 ORF (neab53) has a putative sequence homologue in the NeseNPV genome but not the NeleNPV genome. Specific repeat sequences are coincident with major genome rearrangements that distinguish NeabNPV and NeleNPV. Genes associated with these repeat regions encode a common amino acid motif, suggesting that they are a family of repeated contiguous gene clusters. Lepidopteran baculoviruses, similarly, have a family of repeated genes called the bro gene family. However, there is no significant sequence similarity between the NeabNPV and bro genes. Homologues of early-expressed genes such as ie-1 and lef-3 were absent in NeabNPV, as they are in the previously sequenced hymenopteran baculoviruses. Analyses of ORF upstream sequences identified potential temporally distinct genes on the basis of putative promoter elements.
Figures




References
-
- Acharya, A., and K. P. Gopinathan. 2002. Characterization of late gene expression factors lef-9 and lef-8 from Bombyx mori nucleopolyhedrovirus. J. Gen. Virol. 83:2015-2023. - PubMed
-
- Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403-410. - PubMed
-
- Arends, H. M., and J. A. Jehle. 2002. Homologous recombination between the inverted terminal repeats of defective transposon TCp3.2 causes an inversion in the genome of Cydia pomonella granulovirus. J. Gen. Virol. 83:1573-1578. - PubMed