Physiological roles for amyloid beta peptides
- PMID: 16809372
- PMCID: PMC1819417
- DOI: 10.1113/jphysiol.2006.111203
Physiological roles for amyloid beta peptides
Abstract
Alzheimer's disease is recognized post mortem by the presence of extracellular senile plaques, made primarily of aggregation of amyloid beta peptide (Abeta). This peptide has consequently been regarded as the principal toxic factor in the neurodegeneration of Alzheimer's disease. As such, intense research effort has been directed at determining its source, activity and fate, primarily with a view to preventing its formation or its biological activity, or promoting its degradation. Clearly, much progress has been made concerning its formation by proteolytic processing of the amyloid precursor protein, and its degradation by enzymes such as neprilysin and insulin degrading enzyme. The activities of Abeta, however, are numerous and yet to be fully elucidated. What is currently emerging from such studies is a diffuse but steadily growing body of data that suggests Abeta has important physiological functions and, further, that it should only be regarded as toxic when its production and degradation are imbalanced. Here, we review these data and suggest that physiological levels of Abeta have important physiological roles, and may even be crucial for neuronal cell survival. Thus, the view of Abeta being a purely toxic peptide requires re-evaluation.
Figures


References
-
- Dawson GR, Seabrook GR, Zheng H, Smith DW, Graham S, O'Dowd G, et al. Age-related cognitive deficits, impaired long-term potentiation and reduction in synaptic marker density in mice lacking the beta-amyloid precursor protein. Neuroscience. 1999;90:1–13. - PubMed
-
- Desmond DW, Moroney JT, Sano M, Stern Y. Incidence of dementia after ischemic stroke: results of a longitudinal study. Stroke. 2002;33:2254–2260. - PubMed
-
- Dumont M, Lalonde R, Ghersi-Egea JF, Fukuchi K, Strazielle C. Regional acetylcholinesterase activity and its correlation with behavioral performances in 15-month old transgenic mice expressing the human C99 fragment of APP. J Neural Transm. 2005 DOI 10.1007/s00702-005-0373-6/ - DOI - PubMed
-
- Furukawa K, Barger SW, Blalock EM, Mattson MP. Activation of K+ channels and suppression of neuronal activity by secreted beta-amyloid-precursor protein. Nature. 1996;379:74–78. - PubMed
-
- Glenner GG, Wong CW. Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun. 1984;120:885–890. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials