Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Aug;20(10):1695-7.
doi: 10.1096/fj.06-5864fje. Epub 2006 Jun 29.

Developmental exposure to the pesticide dieldrin alters the dopamine system and increases neurotoxicity in an animal model of Parkinson's disease

Affiliations

Developmental exposure to the pesticide dieldrin alters the dopamine system and increases neurotoxicity in an animal model of Parkinson's disease

Jason R Richardson et al. FASEB J. 2006 Aug.

Abstract

Exposure to pesticides has been suggested to increase the risk of Parkinson's disease (PD), but the mechanisms responsible for this association are not clear. Here, we report that perinatal exposure of mice during gestation and lactation to low levels of dieldrin (0.3, 1, or 3 mg/kg every 3 days) alters dopaminergic neurochemistry in their offspring and exacerbates MPTP toxicity. At 12 wk of age, protein and mRNA levels of the dopamine transporter (DAT) and vesicular monoamine transporter 2 (VMAT2) were increased by perinatal dieldrin exposure in a dose-related manner. We then administered MPTP (2 x 10 mg/kg s.c) at 12 wk of age and observed a greater reduction of striatal dopamine in dieldrin-exposed offspring, which was associated with a greater DAT:VMAT2 ratio. Additionally, dieldrin exposure during development potentiated the increase in GFAP and alpha-synuclein levels induced by MPTP, indicating increased neurotoxicity. In all cases there were greater effects observed in the male offspring than the female, similar to that observed in human cases of PD. These data suggest that developmental exposure to dieldrin leads to persistent alterations of the developing dopaminergic system and that these alterations induce a "silent" state of dopamine dysfunction, thereby rendering dopamine neurons more vulnerable later in life.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources