Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Oct;147(10):4883-92.
doi: 10.1210/en.2005-1635. Epub 2006 Jun 29.

Expression and function of lysophosphatidic acid LPA1 receptor in prostate cancer cells

Affiliations

Expression and function of lysophosphatidic acid LPA1 receptor in prostate cancer cells

Rishu Guo et al. Endocrinology. 2006 Oct.

Abstract

The bioactive phospholipid lysophosphatidic acid (LPA) promotes cell proliferation, survival, and migration by acting on cognate G protein-coupled receptors named LPA(1), LPA(2), and LPA(3). We profiled gene expression of LPA receptors in androgen-dependent and androgen-insensitive prostate cancer cells and found that LPA(1) gene is differentially expressed in androgen-insensitive and LPA-responsive but not androgen-dependent and LPA-resistant cells. In human prostate specimens, expression of LPA(1) gene was significantly higher in the cancer compared with the benign tissues. The androgen-dependent LNCaP cells do not express LPA(1) and do not proliferate in response to LPA stimulation, implying LPA(1) transduces cell growth signals. Accordingly, stable expression of LPA(1) in LNCaP cells rendered them responsive to LPA-induced cell proliferation and decreased their doubling time in serum. Implantation of LNCaP-LPA(1) cells resulted in increased rate of tumor growth in animals compared with those tumors that developed from the wild-type cells. Growth of LNCaP cells depends on androgen receptor activation, and we show that LPA(1) transduces Galphai-dependent signals to promote nuclear localization of androgen receptor and cell proliferation. In addition, treatment with bicalutamide inhibited LPA-induced cell cycle progression and proliferation of LNCaP-LPA(1) cells. These results suggest the possible utility of LPA(1) as a drug target to interfere with progression of prostate cancer.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms