Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2006 Jul;105(1):146-53.
doi: 10.1097/00000542-200607000-00024.

Permeability of injured and intact peripheral nerves and dorsal root ganglia

Affiliations
Comparative Study

Permeability of injured and intact peripheral nerves and dorsal root ganglia

Stephen E Abram et al. Anesthesiology. 2006 Jul.

Abstract

Background: Nerve injury that produces behavioral changes of allodynia and hyperalgesia in animals is associated with electrophysiologic changes in dorsal root ganglion (DRG) cells. The introduction of drugs into the DRG or the peripheral nerve that alter calcium, sodium, or potassium channel activity may be of therapeutic benefit after nerve injury. For this reason, the authors sought to determine whether drugs that do not ordinarily cross the blood-nerve barrier will enter the DRG after intravenous or regional injection and to determine whether nerve injury alters drug access to DRGs or peripheral nerves.

Methods: Both intact and spinal nerve-ligated rats were injected with sodium fluorescein by intravenous, intrathecal, peri-DRG, perisciatic, and epidural routes. DRG, sciatic nerve, and spinal cord tissues were harvested and frozen, and histologic sections were analyzed quantitatively for tissue fluorescence.

Results: In both intact and nerve-injured animals, fluorescein accumulated in DRGs after intravenous, peri-DRG, and epidural injection. There was accumulation in the proximal portion of the ganglion after intrathecal injection. Minimal amounts of fluorescein were found in the sciatic nerve in intact animals after intravenous or perineural injection, but substantial amounts were found in some nerve fascicles in nerve-injured animals after both intravenous and perineural injection. There was almost no fluorescein found in the spinal cord except after intrathecal administration.

Conclusions: In both intact and nerve-injured animals, fluorescein accumulates freely in the DRG after intravenous, epidural, or paravertebral injection. The sciatic nerve is relatively impermeable to fluorescein, but access by either systemic or regional injection is enhanced after nerve injury.

PubMed Disclaimer

Publication types

LinkOut - more resources