Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Mar 15;26(6):1268-84.
doi: 10.1002/sim.2622.

Impact of modelling intra-subject variability on tests based on non-linear mixed-effects models in cross-over pharmacokinetic trials with application to the interaction of tenofovir on atazanavir in HIV patients

Affiliations
Free article

Impact of modelling intra-subject variability on tests based on non-linear mixed-effects models in cross-over pharmacokinetic trials with application to the interaction of tenofovir on atazanavir in HIV patients

Xavière Panhard et al. Stat Med. .
Free article

Abstract

We evaluated the impact of modelling intra-subject variability on the likelihood ratio test (LRT) and the Wald test based on non-linear mixed effects models in pharmacokinetic interaction and bioequivalence cross-over trials. These tests were previously found to achieve a good power but an inflated type I error when intra-subject variability was not taken into account. Trials were simulated under H0 and several H1 and analysed with the NLME function. Different configurations of the number of subjects n and of the number of samples per subject J were evaluated for pharmacokinetic interaction and bioequivalence trials. Assuming intra-subject variability in the model dramatically improved the type I error of both interaction tests. For the Wald test, the type I error decreased from 22, 14 and 7.7 per cent for the original (n = 12, J = 10), intermediate (n = 24, J = 5) and sparse (n = 40, J = 3) designs, respectively, down to 7.5, 6.4 and 3.5 per cent when intra-subject variability was modelled. The LRT achieved very similar results. This improvement seemed mostly due to a better estimation of the standard error of the treatment effect. For J = 10, the type I error was found to be closer to 5 per cent when n increased when modelling intra-subject variability. Power was satisfactory for both tests. For bioequivalence trials, the type I error of the Wald test was 6.4, 5.7 and 4.2 per cent for the original, intermediate and sparse designs, respectively, when modelling intra-subject variability. We applied the Wald test to the pharmacokinetic interaction of tenofovir on atazanavir, a novel protease inhibitor. A significant decrease of the area under the curve of atazanavir was found when patients received tenofovir.

PubMed Disclaimer

MeSH terms

LinkOut - more resources