Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jul 6;51(1):113-23.
doi: 10.1016/j.neuron.2006.05.021.

Potentiation of mossy fiber EPSCs in the cerebellar nuclei by NMDA receptor activation followed by postinhibitory rebound current

Affiliations
Free article

Potentiation of mossy fiber EPSCs in the cerebellar nuclei by NMDA receptor activation followed by postinhibitory rebound current

Jason R Pugh et al. Neuron. .
Free article

Abstract

Behavioral and computational studies predict that synaptic plasticity of excitatory mossy fiber inputs to cerebellar nuclear neurons is required for associative learning, but standard tetanization protocols fail to potentiate nuclear cell EPSCs in mouse cerebellar slices. Nuclear neurons fire action potentials spontaneously unless strongly inhibited by Purkinje neurons, raising the possibility that plasticity-triggering signals in these cells differ from those at classical Hebbian synapses. Based on predictions of neuronal activity during delay eyelid conditioning, we developed quasi-physiological induction protocols consisting of high-frequency mossy fiber stimulation and postsynaptic hyperpolarization. Robust, NMDA receptor-dependent potentiation of nuclear cell EPSCs occurred with protocols including a 150-250 ms hyperpolarization in which mossy fiber stimulation preceded a postinhibitory rebound depolarization. Mossy fiber stimulation potentiated EPSCs even when postsynaptic spiking was prevented by voltage-clamp, as long as rebound current was evoked. These data suggest that Purkinje cell inhibition guides the strengthening of excitatory synapses in the cerebellar nuclei.

PubMed Disclaimer

Comment in

Publication types

MeSH terms

Substances

LinkOut - more resources