Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2006 Oct;34(10):1713-21.
doi: 10.1124/dmd.106.009985. Epub 2006 Jun 30.

In vivo metabolism and final disposition of a novel nonsteroidal androgen in rats and dogs

Affiliations
Comparative Study

In vivo metabolism and final disposition of a novel nonsteroidal androgen in rats and dogs

Minoli A Perera et al. Drug Metab Dispos. 2006 Oct.

Abstract

Compound S-4 (S-3-(4-acetylamino-phenoxy)-2-hydroxy-2-methyl-N-(4-nitro-3-trifluoromethyl-phenyl)-propionamide) is a novel nonsteroidal androgen agonist that mimics many of the beneficial pharmacologic effects of testosterone with lesser effects on the prostate. S-4 demonstrated high androgen receptor binding affinity as well as anabolic specificity during in vivo pharmacologic studies in rats, identifying it as the first member of a new class of selective androgen receptor modulators. The purpose of these studies was to determine the pharmacokinetics and metabolism of S-4 in dogs. S-4 showed linear pharmacokinetics after both intravenous (i.v.) and oral (p.o.) administrations at pharmacologically relevant doses, with a mean clearance of 4.6 ml/min/kg and a mean half-life of about 200 min. It is interesting that dose-dependent oral bioavailability was seen. However, at pharmacologically relevant doses, the oral bioavailability of S-4 was 91%. Species differences were observed in S-4 metabolism; the major metabolic pathway for S-4 in dogs was deacetylation of the B-ring acetamide group and reduction of the A-ring nitro group, whereas the major metabolic pathway for S-4 in rats was hydrolysis on the amide bond and reduction of the A-ring nitro group. In addition, oxidative metabolites and phase II metabolites were identified in both rats and dogs. These studies demonstrate that S-4 maintains its promising pharmacokinetic properties in dogs (i.e., high oral bioavailability and linear kinetics) and is largely eliminated via hepatic metabolism by both phase I and phase II enzymes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources