Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 May;60(5):980-90.

Plasticity of physiology in Lobelia: testing for adaptation and constraint

Affiliations
  • PMID: 16817538

Plasticity of physiology in Lobelia: testing for adaptation and constraint

Christina M Caruso et al. Evolution. 2006 May.

Abstract

Phenotypic plasticity is thought to be a major mechanism allowing sessile organisms such as plants to adapt to environmental heterogeneity. However, the adaptive value of many common plastic responses has not been tested by linking these responses to fitness. Even when plasticity is adaptive, costs of plasticity, such as the energy necessary to maintain regulatory pathways for plastic responses, may constrain its evolution. We used a greenhouse experiment to test whether plastic physiological responses to soil water availability (wet vs. dry conditions) were adaptive and/or costly in the congeneric wildflowers Lobelia cardinalis and L. siphilitica. Eight physiological traits related to carbon and water uptake were measured. Specific leaf area (SLA), photosynthetic rate (A), stomatal conductance (gs), and photosynthetic capacity (Amax) responded plastically to soil water availability in L. cardinalis. Plasticity in Amax was maladaptive, plasticity in A and g(s) was adaptive, and plasticity in SLA was adaptively neutral. The nature of adaptive plasticity in L. cardinalis, however, differed from previous studies. Lobelia cardinalis plants with more conservative water use, characterized by lower g(s), did not have higher fitness under drought conditions. Instead, well-watered L. cardinalis that had higher g(s) had higher fitness. Only Amax responded plastically to drought in L. siphilitica, and this response was adaptively neutral. We detected no costs of plasticity for any physiological trait in either L. cardinalis or L. siphilitica, suggesting that the evolution of plasticity in these traits would not be constrained by costs. Physiological responses to drought in plants are presumed to be adaptive, but our data suggest that much of this plasticity can be adaptively neutral or maladaptive.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources