Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jun;273(12):2645-57.
doi: 10.1111/j.1742-4658.2006.05281.x.

Reconstruction of de novo pathway for synthesis of UDP-glucuronic acid and UDP-xylose from intrinsic UDP-glucose in Saccharomyces cerevisiae

Affiliations
Free article

Reconstruction of de novo pathway for synthesis of UDP-glucuronic acid and UDP-xylose from intrinsic UDP-glucose in Saccharomyces cerevisiae

Takuji Oka et al. FEBS J. 2006 Jun.
Free article

Abstract

UDP-D-glucuronic acid and UDP-D-xylose are required for the biosynthesis of glycosaminoglycan in mammals and of cell wall polysaccharides in plants. Given the importance of these glycans to some organisms, the development of a system for production of UDP-D-glucuronic acid and UDP-D-xylose from a common precursor could prove useful for a number of applications. The budding yeast Saccharomyces cerevisiae lacks an endogenous ability to synthesize or consume UDP-D-glucuronic acid and UDP-D-xylose. However, yeast have a large cytoplasmic pool of UDP-D-glucose that could be used to synthesize cell wall beta-glucan, as a precursor of UDP-D-glucuronic acid and UDP-D-xylose. Thus, if a mechanism for converting the precursors into the end-products can be identified, yeast may be harnessed as a system for production of glycans. Here we report a novel S. cerevisiae strain that coexpresses the Arabidopsis thaliana genes UGD1 and UXS3, which encode a UDP-glucose dehydrogenase (AtUGD1) and a UDP-glucuronic acid decarboxylase (AtUXS3), respectively, which are required for the conversion of UDP-D-glucose to UDP-D-xylose in plants. The recombinant yeast strain was capable of converting UDP-D-glucose to UDP-D-glucuronic acid, and UDP-D-glucuronic acid to UDP-D-xylose, in the cytoplasm, demonstrating the usefulness of this yeast system for the synthesis of glycans. Furthermore, we observed that overexpression of AtUGD1 caused a reduction in the UDP-D-glucose pool, whereas coexpression of AtUXS3 and AtUGD1 did not result in reduction of the UDP-D-glucose pool. Enzymatic analysis of the purified hexamer His-AtUGD1 revealed that AtUGD1 activity is strongly inhibited by UDP-D-xylose, suggesting that AtUGD1 maintains intracellular levels of UDP-D-glucose in cooperation with AtUXS3 via the inhibition of AtUGD1 by UDP-D-xylose.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances