Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Nov 4;1069(2):165-70.
doi: 10.1016/0005-2736(91)90119-s.

Effect of BHT 920 on calcium-activated K+ channels in renal epithelioid MDCK cells

Affiliations

Effect of BHT 920 on calcium-activated K+ channels in renal epithelioid MDCK cells

H Weiss et al. Biochim Biophys Acta. .

Abstract

In Madin Darby canine kidney (MDCK) cells, epinephrine has been shown to increase intracellular calcium, activate calcium-dependent K+ channels and hyperpolarize the cell membrane. The present study has been performed to test for the possible involvement of alpha 2-adrenergic receptors. To this end, the effects of alpha 2-adrenoceptor agonist BHT 920 have been studied on cell membrane potential, ion channel activity and intracellular calcium: Similar to epinephrine, BHT 920 hyperpolarizes the cell membrane, increases intracellular calcium and activates inwardly rectifying K+ channels (single channel slope conductances 30-80 pS). Half-maximal hyperpolarization is achieved at concentrations between 10 and 100 nmol/l. The hyperpolarizing effect of BHT 920 is abolished in the presence of alpha 2-adrenoceptor antagonist yohimbine (100 nmol/l) but not in the presence of alpha 1-adrenoceptor antagonist prazosin (100 nmol/l). At extracellular calcium activity below 100 nmol/l BHT 920 still leads to a transient hyperpolarization of the cell membrane but, in contrast to epinephrine, is unable to significantly increase intracellular calcium or significantly activate the calcium-sensitive K+ channels. The observations indicate that stimulation of alpha 2-receptors participates in the epinephrine-induced increase of intracellular calcium, channel activation and hyperpolarization.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources