Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1975 Jul 10;250(13):4832-40.

Regulation of adenosine 3:5-monophosphate-dependent protein kinase

  • PMID: 168193
Free article

Regulation of adenosine 3:5-monophosphate-dependent protein kinase

S L Keely et al. J Biol Chem. .
Free article

Abstract

The effects of epinephrine, glucagon, insulin and 1-methyl-3-isobutylxanthine on adenosine 3:5-monophosphate (cAMP)-dependent protein kinase activity were investigated in the perfused rat heart. The conditions for homogenization of heart tissue and assay of protein kinase are described. The activation state of the enzyme is expressed as the ratio of the rate of phosphorylation of histone in the absence to that in the presence of 2 mu-M cAMP. This activity ratio is stable in crude homogenates over 15 min of incubation; it is not affected by up to 30-fold dilution of the tissue volume. The ratio is elevated to a variable degree in hearts taken immediately from the animal but falls to a stable, basal level of 0.15 to 0.20 after 15 min of perfusion in vitro. An optimal concentration of epinephrine (10 mu-M) in the perfusate elevates cAMP from 0.5 to 1.3 nmol per g of tissue and increases the protein kinase activity ratio from 0.20 to 0.65. When hearts are perfused with a steady, submaximal concentration of epinephrine (0.4 mu-M), the level of cAMP and the protein kinase activity ratio rise in parallel within 15 s and remain elevated for at least 10 min. When epinephrine is removed from the perfusion medium, the level of cAMP and enzyme activity ratio decline rapidly to basal levels. Both glucagon and the phosphodiesterase inhibitor 1-methyl-3-isobutylxanthine also increase the cardiac cAMP levels and protein kinase activity ratio in a dose-dependent manner. Glucagon acts as rapidly as does epinephrine whereas 1-methyl-3-isobutylxanthine requires at least 30 s before any effect can be observed. Insulin by itself does not significantly affect the cyclic nucleotide level or enzyme activity. The hormone has not been observed to lower the cAMP level or protein kinase activity in the heart under any conditions tested. In concentrations of 10 microunits per ml or greater, it does, however, cause a slight rise in the tissue level of cAMP and the protein kinase activity when these have been elevated to intermediate levels by exposure to epinephrine. This effect could only be observed when hearts were treated with catecholamine and could not be detected with glucagon or 1-methyl-3-isobutylxanthine. In all cases tested, slight increases in the protein kinase activity ratio (from 0.2 to 0.3) were accompanied by much greater increases in the amount of phosphorylase in the a form (20% to 70%). It was observed that at perfusion times greater than 3 min, there was a significant reduction in phosphorylase activity even though both the cAMP level and protein kinase activity remained elevated. In these studies, changes in the protein kinase activity correlate well with the tissue cAMP levels under all conditions tested.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources