Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2006 Jul 4:6:176.
doi: 10.1186/1471-2407-6-176.

The ratio of Matriptase/HAI-1 mRNA is higher in colorectal cancer adenomas and carcinomas than corresponding tissue from control individuals

Affiliations
Comparative Study

The ratio of Matriptase/HAI-1 mRNA is higher in colorectal cancer adenomas and carcinomas than corresponding tissue from control individuals

Lotte K Vogel et al. BMC Cancer. .

Abstract

Background: It has recently been shown that overexpression of the serine protease, matriptase, in transgenic mice causes a dramatically increased frequency of carcinoma formation. Overexpression of HAI-1 and matriptase together changed the frequency of carcinoma formation to normal. This suggests that the ratio of matriptase to HAI-1 influences the malignant progression. The aim of this study has been to determine the ratio of matriptase to HAI-1 mRNA expression in affected and normal tissue from individuals with colorectal cancer adenomas and carcinomas as well as in healthy individuals, in order to determine at which stages a dysregulated ratio of matriptase/HAI-1 mRNA is present during carcinogenesis.

Methods: Using quantitative RT-PCR, we have determined the mRNA levels for matriptase and HAI-1 in colorectal cancer tissue (n = 9), severe dysplasia (n = 15), mild/moderate dysplasia (n = 21) and in normal tissue from the same individuals. In addition, corresponding tissue was examined from healthy volunteers (n = 10). Matriptase and HAI-1 mRNA levels were normalized to beta-actin.

Results: Matriptase mRNA level was lower in carcinomas compared to normal tissue from healthy individuals (p < 0.01). In accordance with this, the matriptase mRNA level was also lower in adenomas/carcinomas combined as compared to their adjacent normal tissue (p < 0.01). HAI-1 mRNA levels in both normal and affected tissue from individuals with severe dysplasia or carcinomas and in affected tissue with mild/moderate dysplasia were all significantly lower than mRNA levels observed in corresponding tissue from healthy control individuals. HAI-1 mRNA was lower in carcinomas as compared to normal tissue from healthy individuals (p < 0.001). HAI-1 mRNA levels were significantly lower in tissue displaying mild/moderate (p < 0.001) and severe (p < 0.01) dysplasia compared to normal tissue from the same patients. Both adenomas and carcinomas displayed a significantly different matriptase/HAI-1 mRNA ratio than corresponding normal tissue from healthy control individuals (p < 0.05). In addition statistically significant difference (p < 0.001) could be observed between mild/moderate and severe adenomas and their adjacent normal tissue.

Conclusion: Our results show that dysregulation of the matriptase/HAI-1 mRNA ratio occurs early during carcinogenesis. Future studies are required to clarify whether the dysregulated matriptase/HAI-1 ratio was causing the malignant progression or is a consequence of the same.

PubMed Disclaimer

Figures

Figure 1
Figure 1
The mRNA expression of matriptase, HAI-1 and the ratios between matriptase/HAI-1 mRNAs determined by real-time RT-PCR from healthy individuals (N), individuals with mild/moderate dysplasia (M/M), severe dysplasia (S) or carcinomas (C). Both normal (open bars) and affected (hatched bars) tissue were examined from each individual. Both mRNA levels were normalized to the β-actin mRNA level. The box shows the interquartile range, the whiskers the range and the median is indicated by a vertical line.

Similar articles

Cited by

References

    1. Kim MG, Chen C, Lyu MS, Cho EG, Park D, Kozak C, Schwartz RH. Cloning and chromosomal mapping of a gene isolated from thymic stromal cells encoding a new mouse type II membrane serine protease, epithin, containing four LDL receptor modules and two CUB domains. Immunogenetics. 1999;49:420–428. doi: 10.1007/s002510050515. - DOI - PubMed
    1. Lin CY, Anders J, Johnson M, Sang QA, Dickson RB. Molecular cloning of cDNA for matriptase, a matrix-degrading serine protease with trypsin-like activity. J Biol Chem. 1999;274:18231–18236. doi: 10.1074/jbc.274.26.18231. - DOI - PubMed
    1. Takeuchi T, Shuman MA, Craik CS. Reverse biochemistry: use of macromolecular protease inhibitors to dissect complex biological processes and identify a membrane-type serine protease in epithelial cancer and normal tissue. Proc Natl Acad Sci U S A. 1999;96:11054–11061. doi: 10.1073/pnas.96.20.11054. - DOI - PMC - PubMed
    1. Tanimoto H, Underwood LJ, Wang YX, Shigemasa K, Parmley TH, O'Brien TJ. Ovarian tumor cells express a transmembrane serine protease: A potential candidate for early diagnosis and therapeutic intervention. Tumor Biology. 2001;22:104–114. doi: 10.1159/000050604. - DOI - PubMed
    1. Velasco G, Cal S, Quesada V, Sanchez LM, Lopez-Otin C. Matriptase-2, a membrane-bound mosaic serine proteinase predominantly expressed in human liver and showing degrading activity against extracellular matrix proteins. J Biol Chem. 2002;277:37637–37646. doi: 10.1074/jbc.M203007200. - DOI - PubMed

Publication types

MeSH terms