Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006;57(11):2651-9.
doi: 10.1093/jxb/erl028. Epub 2006 Jul 4.

Uptake, metabolism and distribution of organic and inorganic nitrogen sources by Pinus sylvestris

Affiliations

Uptake, metabolism and distribution of organic and inorganic nitrogen sources by Pinus sylvestris

Jörgen Persson et al. J Exp Bot. 2006.

Abstract

Although an increasing number of studies show that many plant species have the capacity to take up amino acids from exogenous sources, the importance of such uptake for plant nitrogen nutrition is largely unknown. Moreover, little is known regarding metabolism and distribution of amino acid-N following uptake or of the regulation of these processes in response to plant nitrogen status. Here results are presented from a study following uptake, metabolism, and distribution of nitrogen from NO(3)(-) NH(4)(+), Glu, or Ala in Scots pine (Pinus sylvestris L). In a parallel experiment, Ala uptake, processing, and shoot allocation were also monitored following a range of pretreatments intended to alter plant C- and N-status. Uptake data, metabolite profiles, N fluxes through metabolite pools and tissues, as well as alanine aminotransferase activity are presented. The results show that uptake of the organic N sources was equal to or larger than NH(4)(+) uptake, while NO(3)(-) uptake was comparatively low. Down-regulation of Ala uptake in response to pretreatments with NH(4)NO(3) or methionine sulphoximine (MSX) indicates similarities between amino acid and inorganic N uptake regulation. N derived from amino acid uptake exhibited a rapid flux through the amino acid pool following uptake. Relative shoot allocation of amino acid-N was equal to that of NH(4)(+) but smaller than for NO(3)(-) Increased N status as well as MSX treatment significantly increased relative shoot allocation of Ala-N suggesting that NH(4)(+) may have a role in the regulation of shoot allocation of amino acid-N.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources