Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jul 4;114(1 Suppl):I327-30.
doi: 10.1161/CIRCULATIONAHA.105.001586.

Synthetic vascular prosthesis impregnated with mesenchymal stem cells overexpressing endothelial nitric oxide synthase

Affiliations

Synthetic vascular prosthesis impregnated with mesenchymal stem cells overexpressing endothelial nitric oxide synthase

Sachiko Kanki-Horimoto et al. Circulation. .

Abstract

Background: Endothelial dysfunction is known to exaggerate coronary artery disease, sometimes leading to irreversible myocardial damage. In such cases, repetitive coronary revascularization including coronary artery bypass grafting is needed, which may cause a shortage of graft conduits. On the other hand, endothelial nitric oxide synthase (eNOS) is an attractive target of cardiovascular gene therapy. The vascular prostheses, of which the inner surfaces are covered with mesenchymal stem cells (MSCs) overexpressing eNOS, are expected to offer feasible effects of NO and angiogenic effects of MSCs on the native coronary arterial beds, as well as improvement of self-patency. Herein, we attempted to develop small caliber vascular prostheses generating the bioactive proteins. Also, we attempted to transduce eNOS cDNA into MSCs.

Methods and results: The MSCs were isolated from rat bone marrow and transduced with each adenovirus harboring rat eNOS cDNA and beta-galactosidase (beta-gal) (eNOS/MSCs and beta-gal/MSCs). The beta-gal/MSCs were impregnated into vascular prostheses, then the expressions of beta-gal on the inner surfaces of them were evaluated by 5-bromo-4-chloro-3-indolyl beta-D-galactoside staining. The NOS activity of eNOS/MSCs was assayed by monitoring the conversion of 3H-arginine to 3H-citrulline. The inner surfaces of the vascular prostheses were covered with MSCs expressing beta-gal. The amount of the 3H-citrulline increased, and eNOS/MSCs were determined to generate enzymatic activity of eNOS. This activity was completely inhibited by N(G)-nitro-L-arginine methyl ester.

Conclusions: The inner surface of expanded polytetrafluoroethylene vascular prostheses seeded with lacZ gene-transduced MSCs exhibited recombinant proteins. Development of eNOS/MSC-seeded vascular prostheses would promise much longer graft patency and vasculoprotective effects.

PubMed Disclaimer

Comment in

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources