Matrix metalloproteinase-7 activation of mouse paneth cell pro-alpha-defensins: SER43 down arrow ILE44 proteolysis enables membrane-disruptive activity
- PMID: 16822871
- DOI: 10.1074/jbc.M602041200
Matrix metalloproteinase-7 activation of mouse paneth cell pro-alpha-defensins: SER43 down arrow ILE44 proteolysis enables membrane-disruptive activity
Abstract
Small intestinal Paneth cells secrete alpha-defensin microbicidal peptides as mediators of innate enteric immunity. In mice, production of mature Paneth cell alpha-defensins, termed cryptdins (Crps), requires proteolytic activation of inactive precursors (pro-Crps) by the convertase matrix metalloproteinase-7. Proteolysis of mouse (pro-Crp4)(20-92) produces the specific cleavage intermediates pro-Crp4(44-92), pro-Crp4(54-92), and pro-Crp4(59-92). To identify which cleavage event enables bactericidal activity, recombinant pro-Crp4-processing intermediates were purified to homogeneity and assayed for bactericidal peptide activity. The in vitro bactericidal activities of pro-Crp4-processing intermediates were very similar to fully processed Crp4, contrasting the lack of bactericidal and membrane-disruptive activity shown by pro-Crp4(20-92). Thus, cleavage of pro-Crp4(20-92) at Ser(43) downward arrowIle(44) is sufficient to activate bactericidal activity, and amino acids in the pro-Crp4(20-43) of the proregion maintain the precursor in an inactive state. Because cationic Arg residues are determinants of Crp4 bactericidal peptide activity, we hypothesized that Asp and Glu residues in pro-Crp4(20-43) neutralize Crp4 Arg side chains in pro-Crp4(20-92). Therefore, a pro-Crp4(20-92) variant with Gly substitutions at all pro-Crp4(20-43) Asp and Glu positions ((DE/G)-pro-Crp4) was prepared, and it was bactericidal and lysed phospholipid vesicles under conditions where native pro-Crp4(20-92) lacks activity. These findings show that MMP-7 proteolysis of pro-Crp4(20-92) at Ser(43) downward arrowIle(44) converts inactive precursors to bactericidal forms by removal of covalently associated, inhibitory acidic amino acids from proximity with the Crp4 component of the molecule.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
