Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2006 Nov;291(5):E1092-9.
doi: 10.1152/ajpendo.00583.2005. Epub 2006 Jul 5.

Differential regulation of intestinal lipid metabolism-related genes in obesity-resistant A/J vs. obesity-prone C57BL/6J mice

Affiliations
Free article
Comparative Study

Differential regulation of intestinal lipid metabolism-related genes in obesity-resistant A/J vs. obesity-prone C57BL/6J mice

Hidehiko Kondo et al. Am J Physiol Endocrinol Metab. 2006 Nov.
Free article

Abstract

The effects of high-fat (HF) feeding on gene expression in the small intestine were examined using obesity-resistant A/J mice and obesity-prone C57BL/6J (B6) mice. Both strains of mice were maintained on low-fat (LF; 5% fat) or HF (30% fat) diets for 2 wk. Quantitative reverse transcription-PCR analysis revealed that lipid metabolism-related genes, including carnitine palmitoyltransferase (CPT) I, liver fatty acid binding protein, pyruvate dehydrogenase kinase-4, and NADP(+)-dependent cytosolic malic enzyme, were upregulated by HF feeding in both strains of mice. The upregulated gene expression levels were higher in A/J mice than in B6 mice, suggesting more active lipid metabolism in the small intestine of A/J mice. The prominent upregulation of the lipid metabolism-related genes were specific to the small intestine; the expression levels were little or unchanged in the liver, muscle, and white adipose tissue. The increase by HF feeding and predominant expression of the intestinal lipid metabolism-related genes in A/J mice were reflected in the enzyme activities; malic enzyme, CPT, and beta-oxidation activities were increased by HF feeding, and the upregulated malic enzyme and CPT activities were significantly higher in obesity-resistant A/J mice compared with those in obesity-prone B6 mice. These findings suggest that intestinal lipid metabolism is associated with susceptibility to obesity.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms