Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jul;5(7):1527-34.
doi: 10.1021/pr050436j.

Quality control metrics for LC-MS feature detection tools demonstrated on Saccharomyces cerevisiae proteomic profiles

Affiliations

Quality control metrics for LC-MS feature detection tools demonstrated on Saccharomyces cerevisiae proteomic profiles

Brian D Piening et al. J Proteome Res. 2006 Jul.

Abstract

Quantitative proteomic profiling using liquid chromatography-mass spectrometry is emerging as an important tool for biomarker discovery, prompting development of algorithms for high-throughput peptide feature detection in complex samples. However, neither annotated standard data sets nor quality control metrics currently exist for assessing the validity of feature detection algorithms. We propose a quality control metric, Mass Deviance, for assessing the accuracy of feature detection tools. Because the Mass Deviance metric is derived from the natural distribution of peptide masses, it is machine- and proteome-independent and enables assessment of feature detection tools in the absence of completely annotated data sets. We validate the use of Mass Deviance with a second, independent metric that is based on isotopic distributions, demonstrating that we can use Mass Deviance to identify aberrant features with high accuracy. We then demonstrate the use of independent metrics in tandem as a robust way to evaluate the performance of peptide feature detection algorithms. This work is done on complex LC-MS profiles of Saccharomyces cerevisiae which present a significant challenge to peptide feature detection algorithms.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances