Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006:22:457-86.
doi: 10.1146/annurev.cellbio.22.010305.104538.

Iron-sulfur protein biogenesis in eukaryotes: components and mechanisms

Affiliations
Review

Iron-sulfur protein biogenesis in eukaryotes: components and mechanisms

Roland Lill et al. Annu Rev Cell Dev Biol. 2006.

Abstract

Iron-sulfur (Fe/S) clusters require a complex set of proteins to become assembled and incorporated into apoproteins in a living cell. Researchers have described three distinct assembly systems in eukaryotes that are involved in the maturation of cellular Fe/S proteins. Mitochondria are central for biogenesis. They contain the ISC-the iron-sulfur cluster assembly machinery that was inherited from a similar system of eubacteria in evolution and is involved in biogenesis of all cellular Fe/S proteins. The basic principle of mitochondrial (and bacterial) Fe/S protein maturation is the synthesis of the Fe/S cluster on a scaffold protein before the cluster is transferred to apoproteins. Biogenesis of cytosolic and nuclear Fe/S proteins is facilitated by the cytosolic iron-sulfur protein assembly (CIA) apparatus. This process requires the participation of mitochondria that export a still unknown component via the ISC export machinery, including an ABC transporter.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources