Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Sep;26(9):2103-9.
doi: 10.1161/01.ATV.0000235724.11299.76. Epub 2006 Jul 6.

Endothelial alpha(v)beta3 integrin-targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis

Affiliations

Endothelial alpha(v)beta3 integrin-targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis

Patrick M Winter et al. Arterioscler Thromb Vasc Biol. 2006 Sep.

Abstract

Objective: Angiogenic expansion of the vasa vasorum is a well-known feature of progressive atherosclerosis, suggesting that antiangiogenic therapies may stabilize or regress plaques. Alpha(v)beta3 integrin-targeted paramagnetic nanoparticles were prepared for noninvasive assessment of angiogenesis in early atherosclerosis, for site-specific delivery of antiangiogenic drug, and for quantitative follow-up of response.

Methods and results: Expression of alpha(v)beta3 integrin by vasa vasorum was imaged at 1.5 T in cholesterol-fed rabbit aortas using integrin-targeted paramagnetic nanoparticles that incorporated fumagillin at 0 microg/kg or 30 microg/kg. Both formulations produced similar MRI signal enhancement (16.7%+/-1.1%) when integrated across all aortic slices from the renal arteries to the diaphragm. Seven days after this single treatment, integrin-targeted paramagnetic nanoparticles were readministered and showed decreased MRI enhancement among fumagillin-treated rabbits (2.9%+/-1.6%) but not in untreated rabbits (18.1%+/-2.1%). In a third group of rabbits, nontargeted fumagillin nanoparticles did not alter vascular alpha(v)beta3-integrin expression (12.4%+/-0.9%; P>0.05) versus the no-drug control. In a second study focused on microscopic changes, fewer microvessels in the fumagillin-treated rabbit aorta were counted compared with control rabbits.

Conclusions: This study illustrates the potential of combined molecular imaging and drug delivery with targeted nanoparticles to noninvasively define atherosclerotic burden, to deliver effective targeted drug at a fraction of previous levels, and to quantify local response to treatment.

PubMed Disclaimer

Publication types

MeSH terms