Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jul;65(7):722-32.
doi: 10.1097/01.jnen.0000228199.89420.90.

Identification of changes in gene expression in dorsal root ganglia in diabetic neuropathy: correlation with functional deficits

Affiliations

Identification of changes in gene expression in dorsal root ganglia in diabetic neuropathy: correlation with functional deficits

Sally Amanda Price et al. J Neuropathol Exp Neurol. 2006 Jul.

Abstract

This study aimed to correlate the onset of functional deficits in diabetic neuropathy with changes in gene expression in rat dorsal root ganglia (DRG). After 1, 4, or 8 weeks of streptozotocin-induced diabetes, sensory and motor nerve conduction velocities (NCV) were measured as an indicator of neuropathy and changes in gene expression were measured using Affymetrix oligonucleotide microarrays. No significant changes in NCV were found after 1 week of diabetes, but after 4 and 8 weeks, there was a significant reduction in both sensory and motor NCV. Global gene expression changes in diabetic rat DRG were evident from principal component analysis of microarray data after 1, 4, and 8 weeks. Expression changes in individual genes were relatively small in line with a gradual degenerative neuropathy indirectly resulting from diabetes. Sets of differentially expressed genes have been identified and quantitative reverse transcriptase-polymerase chain reaction has been used to confirm the microarray data for several genes. Gene ontology overrepresentation analysis was performed on the microarray data to identify biologic processes altered in diabetic DRG. The genes identified in this study may be responsible for causing the functional deficits and suggest pathways/processes that require further investigation as possible targets for therapeutic intervention.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms