Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jul-Aug;79(4):688-94.
doi: 10.1086/505512. Epub 2006 Jun 21.

Postprandial intestinal blood flow, metabolic rates, and exercise in Chinook salmon (Oncorhynchus tshawytscha)

Affiliations

Postprandial intestinal blood flow, metabolic rates, and exercise in Chinook salmon (Oncorhynchus tshawytscha)

Helgi Thorarensen et al. Physiol Biochem Zool. 2006 Jul-Aug.

Abstract

Following a relatively large meal (2% body mass of dry pellets), intestinal blood flow in chinook salmon (Oncorhynchus tshawytscha) increased significantly, up to 81%, between 14 and 29 h postprandially. Also, 15 h postprandially, oxygen consumption (M(2)) was elevated by 128% compared with a measurement of routine M(2) made after 1 wk of fasting. The postprandial increase in MO(2) (the heat increment) was 33 micromol O(2) min(-1) kg(-1). Because intestinal blood flow is known to decrease during swimming activity in fish, we therefore tested the hypothesis that swimming fish would have to make a trade-off between maximum swimming activity and digestive activity by comparing the swimming performance and metabolic rates of fed and fasted chinook salmon. As expected, MO(2) increased exponentially with swimming velocity in both fed and fasted fish. Moreover, the heat increment was irreducible during swimming, such that MO(2) remained approximately 39 micromol O(2) min(-1) kg(-1) higher in fed fish than in fasted fish at all comparable swimming speeds. However, maximum M dot o2 was unaffected by feeding and was identical in both fed and fasted fish (approximately 250 micromol O(2) min(-1) kg(-1)), and, as a result, the critical swimming speed (U(crit)) was 9% lower in the fed fish. Three days after the fish were fed and digestion was completed, MO(2) and U(crit) were not significantly different from those measured in fasted fish. The ability of salmonids to maintain feeding metabolism during prolonged swimming performance is discussed, and it is suggested that reduced swimming performance may be due to postprandial sparing of intestinal blood to support digestion, thereby limiting the allocation of blood flow to locomotory muscles.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources