Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Nov;156(2):273-83.
doi: 10.1016/j.jsb.2006.04.013. Epub 2006 May 20.

Structural and physical aspects of bacterial chromosome segregation

Affiliations
Review

Structural and physical aspects of bacterial chromosome segregation

Conrad L Woldringh et al. J Struct Biol. 2006 Nov.

Abstract

Microscopic observations on the bacterial nucleoid suggest that the chromosome occurs in the cell as a compact nucleoid phase separate from the cytoplasm. Physical theory likewise predicts a phase separation, taking into consideration DNA supercoiling, nucleoid-binding proteins, and excluded-volume interactions between DNA and cytoplasmic proteins. Specific DNA loci, visualized as oriC-GFP spots in the densely packed nucleoid, exhibit a very low diffusion coefficient indicating that they are virtually immobile and may primarily be moved by overall length growth. Such gradual movement could be effectuated by replication, transertion (combined transcription, translation, and insertion of proteins), and actin- (MreB) directed surface synthesis. Differences in the movement and positioning of gene loci between Escherichia coli and Caulobacter crescentus are discussed. We propose that a low diffusion coefficient could explain the linear positioning of genes in the nucleoid and that differential transcriptional activity could induce different mobilities between either replichores (E. coli) or daughter strands (C. crescentus). The transertion process, possibly in combination with MreB cytoskeletal tracks, could overcome the compaction forces and move specific chromosomal regions and the nucleoid as a whole without invoking a dedicated mechanism.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources