Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Aug 25;347(2):468-76.
doi: 10.1016/j.bbrc.2006.06.116. Epub 2006 Jun 28.

Serotonin depolarizes the membrane potential in rat mesenteric artery myocytes by decreasing voltage-gated K+ currents

Affiliations

Serotonin depolarizes the membrane potential in rat mesenteric artery myocytes by decreasing voltage-gated K+ currents

Young Min Bae et al. Biochem Biophys Res Commun. .

Abstract

We hypothesized that voltage-gated K+ (Kv) currents regulate the resting membrane potential (Em), and that serotonin (5-HT) causes Em depolarization by reducing Kv currents in rat mesenteric artery smooth muscle cells (MASMCs). The resting Em was about -40 mV in the nystatin-perforated patch configuration, and the inhibition of Kv currents by 4-aminopyridine caused marked Em depolarization. The inhibition of Ca2+-activated K+ (KCa) currents had no effect on Em. 5-HT (1 microM) depolarized Em by approximately 11 mV and reduced the Kv currents to approximately 63% of the control at -20 mV. Similar 5-HT effects were observed with the conventional whole-cell configuration with a weak Ca2+ buffer in the pipette solution, but not with a strong Ca2+ buffer. In the presence of tetraethylammonium (1mM), 5-HT caused Em depolarization similar to the control condition. These results indicate that the resting Em is largely under the regulation of Kv currents in rat MASMCs, and that 5-HT depolarizes Em by reducing Kv currents in a [Ca2+]i-dependent manner.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources