Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Aug 11;361(2):327-35.
doi: 10.1016/j.jmb.2006.06.016. Epub 2006 Jun 27.

Unwinding single RNA molecules using helicases involved in eukaryotic translation initiation

Affiliations

Unwinding single RNA molecules using helicases involved in eukaryotic translation initiation

Steven Marsden et al. J Mol Biol. .

Abstract

The small (40 S) subunit of the eukaryotic ribosome may have to scan more than 2000 nucleotides (>600 nm) from its 5'cap recruiting point on an mRNA molecule before initiating on a translation start codon. As with many other processes in living cells, including transcription, editing, mRNA splicing, pre-rRNA processing, RNA transport and RNA decay, scanning is facilitated by helicase activity. However, precise quantitative data on the molecular mechanism of scanning, including the roles of helicases, are lacking. Here, we describe a novel atomic force microscopy (AFM)-based procedure to examine the roles of two yeast helicases, eIF4A and Ded1, previously implicated in translation initiation by genetic and biochemical studies. Our results show that eIF4A, especially in the presence of its "cofactor" eIF4B, promotes ATP-dependent unwinding of localised secondary structure in long RNA molecules under tensional loading, albeit only at high protein:RNA ratios. Thus eIF4A can act to separate only a limited number of base-pairs, possibly via a steric unwinding mechanism. In contrast, Ded1 is more effective in reducing (by up to 50 pN at an AFM loading rate of 14 nNs(-1)) the force necessary to disrupt an RNA stem-loop, and thus shows significant kinetic competence to facilitate fast unwinding. These single molecule experiments indicate that Ded1 is likely to act as the more potent unwinding factor on natural mRNA substrates.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources