Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Sep 8;281(36):26280-8.
doi: 10.1074/jbc.M601354200. Epub 2006 Jul 7.

AtGRXcp, an Arabidopsis chloroplastic glutaredoxin, is critical for protection against protein oxidative damage

Affiliations
Free article

AtGRXcp, an Arabidopsis chloroplastic glutaredoxin, is critical for protection against protein oxidative damage

Ning-Hui Cheng et al. J Biol Chem. .
Free article

Abstract

Glutaredoxins (Grxs) are ubiquitous small heat-stable disulfide oxidoreductases and members of the thioredoxin (Trx) fold protein family. In bacterial, yeast, and mammalian cells, Grxs appear to be involved in maintaining cellular redox homeostasis. However, in plants, the physiological roles of Grxs have not been fully characterized. Recently, an emerging subgroup of Grxs with one cysteine residue in the putative active motif (monothiol Grxs) has been identified but not well characterized. Here we demonstrate that a plant protein, AtGRXcp, is a chloroplast-localized monothiol Grx with high similarity to yeast Grx5. In yeast expression assays, AtGRXcp localized to the mitochondria and suppressed the sensitivity of yeast grx5 cells to H2O2 and protein oxidation. AtGRXcp expression can also suppress iron accumulation and partially rescue the lysine auxotrophy of yeast grx5 cells. Analysis of the conserved monothiol motif suggests that the cysteine residue affects AtGRXcp expression and stability. In planta, AtGRXcp expression was elevated in young cotyledons, green tissues, and vascular bundles. Analysis of atgrxcp plants demonstrated defects in early seedling growth under oxidative stresses. In addition, atgrxcp lines displayed increased protein carbonylation within chloroplasts. Thus, this work describes the initial functional characterization of a plant monothiol Grx and suggests a conserved biological function in protecting cells against protein oxidative damage.

PubMed Disclaimer

Publication types

MeSH terms