Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jun 15;40(12):3762-8.
doi: 10.1021/es0525004.

Pore-scale observation of microsphere deposition at grain-to-grain contacts over assemblage-scale porous media domains using X-ray microtomography

Affiliations

Pore-scale observation of microsphere deposition at grain-to-grain contacts over assemblage-scale porous media domains using X-ray microtomography

Xiqing Li et al. Environ Sci Technol. .

Abstract

The prevalence of colloid deposition at grain-to-grain contacts in two porous media (spherical glass beads and angular quartz sand, 710-850 microm) was examined using X-ray microtomography (XMT) under conditions where the colloid-grain surface interaction was solely attractive (lacking an energy barrier to deposition), and under fluid velocity conditions representative of engineered filtration systems. XMT allows pore-scale observation of colloid deposition over assemblage-scale porous media domains. Colloids visible in reconstructed images were prepared by coating gold on hollow ceramic microspheres (36 microm in size) (to render densities only slightly higher than water). A significant fraction of the deposited microspheres were deposited at grain-to-grain contacts (about 20% in glass beads, 40% in quartz sand) under the conditions examined. The deposited microsphere concentrations decreased log-linearly with increasing transport distance regardless of the environment of deposition (grain-to-grain contact versus single-contact deposition). The profile shape was, therefore, consistent with filtration theory, and the observed deposition rate coefficients were also well predicted by filtration theory. The ability of filtration theory to predict the magnitude and spatial distribution of deposition demonstrates that filtration theory captures the essential elements of deposition in the absence of an energy barrier despite a lack of accounting for grain-to-grain contacts. The observed factor of 2 greater deposition at grain-to-grain contacts in quartz sand relative to equivalently sized glass beads is consistent with greater grain-to-grain contact lengths and greater fraction of small pores in the quartz sand relative to the glass beads, as determined via a pore structure analysis algorithm (medial axis algorithm).

PubMed Disclaimer

Publication types

LinkOut - more resources