Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jul;53(7):1409-15.
doi: 10.1109/TBME.2006.873745.

In vivo results of a new focal tissue ablation technique: irreversible electroporation

Affiliations

In vivo results of a new focal tissue ablation technique: irreversible electroporation

Jon F Edd et al. IEEE Trans Biomed Eng. 2006 Jul.

Abstract

This paper reports results of in vivo experiments that confirm the feasibility of a new minimally invasive method for tissue ablation, irreversible electroporation (IRE). Electroporation is the generation of a destabilizing electric potential across biological membranes that causes the formation of nanoscale defects in the lipid bilayer. In IRE, these defects are permanent and lead to cell death. This paper builds on our earlier theoretical work and demonstrates that IRE can become an effective method for nonthermal tissue ablation requiring no drugs. To test the capability of IRE pulses to ablate tissue in a controlled fashion, we subjected the livers of male Sprague-Dawley rats to a single 20-ms-long square pulse of 1000 V/cm, which calculations had predicted would cause nonthermal IRE. Three hours after the pulse, treated areas in perfusion-fixed livers exhibited microvascular occlusion, endothelial cell necrosis, and diapedeses, resulting in ischemic damage to parenchyma and massive pooling of erythrocytes in sinusoids. However, large blood vessel architecture was preserved. Hepatocytes displayed blurred cell borders, pale eosinophilic cytoplasm, variable pyknosis and vacuolar degeneration. Mathematical analysis indicates that this damage was primarily nonthermal in nature and that sharp borders between affected and unaffected regions corresponded to electric fields of 300-500 V/cm.

PubMed Disclaimer

Publication types

LinkOut - more resources