Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jul;53(7):1433-6.
doi: 10.1109/tbme.2006.873689.

Simulation analysis of conduction block in myelinated axons induced by high-frequency biphasic rectangular pulses

Affiliations

Simulation analysis of conduction block in myelinated axons induced by high-frequency biphasic rectangular pulses

Xu Zhang et al. IEEE Trans Biomed Eng. 2006 Jul.

Abstract

Nerve conduction block induced by high-frequency biphasic rectangular pulses was analyzed using a lumped circuit model of the myelinated axon based on Frankenhaeuser-Huxley (FH) equations. At the temperature of 37 degrees C, axons of different diameters (2-20 microm) can be blocked completely at supra-threshold intensities when the stimulation frequency is above 10 kHz. However, at stimulation frequencies between 6 kHz and 9 kHz, both nerve block and repetitive firing of action potentials can be observed at different stimulation intensities. When the stimulation frequency is below 6 kHz, nerve block does not occur regardless of stimulation intensity. Larger diameter axons have a lower threshold intensity to induce conduction block. When temperature is reduced from 37 degrees C to 20 degrees C, the lowest frequency to completely block large axons (diameters 10-20 microm) decreased from 8 kHz to 4 kHz. This simulation study can guide future animal experiments as well as optimize stimulation waveforms for electrical nerve block in clinical applications.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources