Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 May;192(1):15-24.
doi: 10.1016/j.atherosclerosis.2006.06.005. Epub 2006 Jul 10.

Vascular NAD(P)H oxidase mediates endothelial dysfunction in basilar arteries from Otsuka Long-Evans Tokushima Fatty (OLETF) rats

Affiliations

Vascular NAD(P)H oxidase mediates endothelial dysfunction in basilar arteries from Otsuka Long-Evans Tokushima Fatty (OLETF) rats

Takayuki Matsumoto et al. Atherosclerosis. 2007 May.

Abstract

We examined the responses of basilar arteries taken from Otsuka Long-Evans Tokushima Fatty (OLETF) rats, a type 2 diabetes model. Both the nitric oxide (NO)-mediated relaxation and the cyclic 3',5'-guanosine monophosphate (cGMP) production elicited by acetylcholine (ACh) were much weaker in OLETF rats than in age-matched control Long Evans Tokushima Otsuka (LETO) rats. The contraction induced by an NO synthase (NOS) inhibitor [N(G)-nitro-L-arginine (L-NNA)] was weaker in the OLETF group. In that group, application of apocynin, an NAD(P)H oxidase inhibitor, normalized (i) ACh-induced relaxation, (ii) L-NNA-induced contraction, and (iii) ACh-induced cGMP production to the LETO levels. Superoxide anion production was greater in basilar arteries from OLETF rats than in those from LETO rats. The protein expression of gp91(phox), an NAD(P)H oxidase subunit, was upregulated in the OLETF arteries (versus LETO ones). These results suggest that the existence of endothelial dysfunction in basilar arteries in type 2 diabetes is related to increased oxidative stress mediated via NAD(P)H oxidase. Possibly, an impairment of NO-dependent relaxation responses and a basal impairment of NO signaling may be responsible for the increased risk of adverse cerebrovascular events in type 2 diabetes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources