Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Sep 1;40(3):354-64.
doi: 10.1002/ajmg.1320400323.

Discordance of muscular dystrophy in monozygotic female twins: evidence supporting asymmetric splitting of the inner cell mass in a manifesting carrier of Duchenne dystrophy

Affiliations

Discordance of muscular dystrophy in monozygotic female twins: evidence supporting asymmetric splitting of the inner cell mass in a manifesting carrier of Duchenne dystrophy

J R Lupski et al. Am J Med Genet. .

Abstract

In 1990, Richards et al. reported dramatically skewed lyonization in a set of female monozygotic twins heterozygous for Duchenne muscular dystrophy (DMD). The skewed inactivation pattern was symmetrical in opposite directions, one twin being affected with DMD, the other one being normal. Here, we report an additional set of female monozygotic twins heterozygous for a mutation at the dystrophin locus. Similarly, one shows a manifesting carrier phenotype while one is normal. However, unlike the previous report, we find a skewed X inactivation pattern only in the affected twin, while the normal twin showed a random X inactivation pattern. Our results lend considerable experimental support for the models of twinning and X inactivation recently outlined by Nance in 1990, in that these twins probably represent asymmetric splitting of the inner cell mass (ICM): The affected twin likely arose when a small proportion of the ICM split off after lyonization had occurred. In this situation, the original ICM could give rise to the normal twin with random lyonization, while the newly split cells would experience catch-up growth and lead to the affected twin. Genetic studies of this family showed that the specific dystrophin gene mutation was an exon duplication that arose sporadically in the paternally derived X chromosome.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources