Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jun 2;109(21):4852-61.
doi: 10.1021/jp050926z.

Effect of pressure on the proton transfer rate from a photoacid to a solvent. 4. Photoacids in methanol

Affiliations

Effect of pressure on the proton transfer rate from a photoacid to a solvent. 4. Photoacids in methanol

Liat Genosar et al. J Phys Chem A. .

Abstract

The pressure dependence of the excited-state proton dissociation rate constant of four photoacids, 2-naphthol-6,8-disulfonate (2N68DS), 10-hydroxycamptothecin (10-CPT), 5-cyano-2-naphthol (5CN2), and 5,8-dicyano-2-naphthol (DCN2), are studied in methanol. The results are compared with the results of the pressure dependence study we recently conducted for several photoacids in water, ethanol, and propanol. The pressure dependence is explained using an approximate stepwise two-coordinate proton transfer model. The increase in rate, as a function of pressure, manifests a strong dependence of proton tunneling on the distance which decreases with an increase of pressure between the two oxygen atoms involved in the process. The decrease in the proton transfer rate with increasing pressure reflects the dependence of the reaction on the solvent relaxation rate. We found that, for the relatively weak photoacids 2N68DS, 10-CPT, and 5CN2, the proton transfer rate constant increases by a factor of about 5-8 at a pressure of about 1.5 GPa. For a strong photoacid like DCN2, the rate increase was only by a factor of 2.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources