Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Aug 15;15(16):2523-32.
doi: 10.1093/hmg/ddl173. Epub 2006 Jul 11.

Ataxin-2 and its Drosophila homolog, ATX2, physically assemble with polyribosomes

Affiliations

Ataxin-2 and its Drosophila homolog, ATX2, physically assemble with polyribosomes

Terrence F Satterfield et al. Hum Mol Genet. .

Abstract

Mutations resulting in the expansion of a polyglutamine tract in the protein ataxin-2 give rise to the neurodegenerative disorders spinocerebellar ataxia type 2 and Parkinson's disease. The normal cellular function of ataxin-2 and the mechanism by which polyglutamine expansion of ataxin-2 causes neurodegeneration are unknown. Here, we demonstrate that ataxin-2 and its Drosophila homolog, ATX2, assemble with polyribosomes and poly(A)-binding protein (PABP), a key regulator of mRNA translation. The assembly of ATX2 with polyribosomes is mediated independently by two distinct evolutionarily conserved regions of ATX2: an N-terminal Lsm/Lsm-associated domain (LsmAD), found in proteins that function in nuclear RNA processing and mRNA decay, and a PAM2 motif, found in proteins that interact physically with PABP. We further show that the PAM2 motif mediates a physical interaction of ATX2 with PABP in addition to promoting ATX2 assembly with polyribosomes. Our results suggest a model in which ATX2 binds mRNA directly through its Lsm/LsmAD domain and indirectly via binding PABP that is itself directly bound to mRNA. These findings, coupled with work on other ataxin-2 family members, suggest that ATX2 plays a direct role in translational regulation. Our results raise the possibility that polyglutamine expansions within ataxin-2 cause neurodegeneration by interfering with the translational regulation of particular mRNAs.

PubMed Disclaimer

Publication types