Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991;40(1-3):93-103.
doi: 10.1016/0960-0760(91)90172-2.

Central peptidergic neurons as targets for glucocorticoid action. Evidence for the presence of glucocorticoid receptor immunoreactivity in various types of classes of peptidergic neurons

Affiliations

Central peptidergic neurons as targets for glucocorticoid action. Evidence for the presence of glucocorticoid receptor immunoreactivity in various types of classes of peptidergic neurons

A Cintra et al. J Steroid Biochem Mol Biol. 1991.

Abstract

By means of double immunolabeling procedures it has been possible to demonstrate glucocorticoid receptor (GR) immunoreactivity (IR) in large numbers of various peptidergic neurons of the brain including neurons containing gastrointestinal peptides, opioid peptides, and peptides with a hypothalamic hormone function. For each peptide system, however, marked heterogeneities exist among brain regions. Thus, in the neocortex and the hippocampal formation most of the brain peptide neurons lack GR IR, while the same types of peptide neurons in the arcuate and paraventricular nucleus [e.g. neuropeptide Y (NPY), somatostatin (SRIF) and the cholecystokinin (CCK) neurons] possess strong GR IR. Furthermore, in the arcuate, parvocellular part of the paraventricular nuclei and the central amygdaloid nucleus practically all the peptidergic neurons are strongly GR IR, while in the lateral hypothalamus, mainly the neurotensin (NT) and galanin (GAL) IR neurons are GR IR. These marked differences among areas probably reflect functional differences dependent upon their participation in stress regulated circuits. All the paraventricular NT, corticotropin-releasing factor (CRF), growth hormone-releasing factor (GRF), thyrotropin-releasing hormone (TRH) and SRIF IR neurons appear to contain GR IR, while the luteinizing hormone-releasing hormone (LHRH) IR neurons lack GR IR, underlying the importance of glucocorticoids (GC) in controlling endocrine function. Finally, the GC may influence pain and mood control mainly via effects on enkephalin (ENK) neurons especially in the basal ganglia (mood) and on all beta-endorphin (beta-END) neurons of the arcuate nucleus, while most of the dynorphin neurons are not directly controlled by GC.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources