Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Case Reports
. 2006 Aug;27(8):830-1.
doi: 10.1002/humu.9443.

Missense mutation in the N-acetylglucosamine-1-phosphotransferase gene (GNPTA) in a patient with mucolipidosis II induces changes in the size and cellular distribution of GNPTG

Affiliations
Case Reports

Missense mutation in the N-acetylglucosamine-1-phosphotransferase gene (GNPTA) in a patient with mucolipidosis II induces changes in the size and cellular distribution of GNPTG

Stephan Tiede et al. Hum Mutat. 2006 Aug.

Abstract

Mucolipidosis type II (ML II; I-cell disease) and mucolipidosis III (ML III; pseudo Hurler polydystrophy) are autosomal recessively inherited disorders caused by a defective N-acetylglucosamine 1-phosphotransferase (phosphotransferase). The formation of mannose 6-phosphate markers in soluble lysosomal enzymes is impeded leading to their increased excretion into the serum, to cellular deficiency of multiple hydrolases, and lysosomal storage of non-digested material. Phosphotransferase deficiency is caused by mutations in GNPTA and GNPTG encoding phosphotransferase subunits. Here we report on an adolescent with progressive joint contractions and other signs of mucolipidosis II who survived to the age of 14 years. Impaired trafficking of lysosomal enzymes cathepsin D and -hexosaminidase in metabolically labeled fibroblasts was documented. Mutations in the GNPTG gene and alterations in the GNPTG mRNA level were not detected. A different electrophoretic mobility of the 97 kDa GNPTG dimer suggested posttranslational modification abrogating the compartmentalization of GNPTG in the Golgi apparatus. A nucleotide substitution in the GNPTA gene (c.3707A>T) was identified altering the predicted C-terminal transmembrane anchor of the phosphotransferase subunit. The data demonstrate that defective GNPTA not only impairs lysosomal enzyme targeting but also the availability of intact GNPTG required for phosphotransferase activity and assembly of subunits.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources