Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Nov-Dec;82(6):1677-85.
doi: 10.1562/2006-05-07-RA-893.

Photoinduced hydrogen production by direct electron transfer from photosystem I cross-linked with cytochrome c3 to [NiFe]-hydrogenase

Affiliations

Photoinduced hydrogen production by direct electron transfer from photosystem I cross-linked with cytochrome c3 to [NiFe]-hydrogenase

Masaki Ihara et al. Photochem Photobiol. 2006 Nov-Dec.

Abstract

The photosynthetic reaction center is an efficient molecular device for the conversion of light energy to chemical energy. In a previous study, we synthesized the hydrogenase/photosystem I (PSI) complex, in which Ralstonia hydrogenase was linked to the cytoplasmic side of Synechocystis PSI, to modify PSI so that it photoproduced molecular hydrogen (H2). In that study, hydrogenase was fused with a PSI subunit, PsaE, and the resulting hydrogenase-PsaE fusion protein was self-assembled with PsaE-free PSI to give the hydrogenase/PSI complex. Although the hydrogenase/PSI complex served as a direct light-to-H2 conversion system in vitro, the activity was totally suppressed by adding physiological PSI partners, ferredoxin (Fd) and ferredoxin-NADP+-reductase (FNR). In the present study, to establish an H2 photoproduction system in which the activity is not interrupted by Fd and FNR, position 40 of PsaE from Synechocystis sp. PCC6803, corresponding to the Fd-binding site on PSI, was selected and targeted for the cross-linking with cytochrome c3 (cytc3) from Desulfovibrio vulgaris. The covalent adduct of cytc3 and PsaE was stoichiometrically assembled with PsaE-free PSI to form the cytc3/PSI complex. The NADPH production by the cytc3/PSI complex coupled with Fd and FNR decreased to approximately 20% of the original activity, whereas the H2 production by the cytc3/PSI complex coupled with hydrogenase from Desulfovibrio vulgaris was enhanced 7-fold. Consequently, in the simultaneous presence of hydrogenase, Fd, and FNR, the light-driven H2 production by the hydrogenase/cytc3/PSI complex was observed (0.30 pmol Hz/mg chlorophyll/h). These results suggest that the cytc3/PSI complex may produce H2 in vivo.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources