Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Sep 7;1108(1):88-97.
doi: 10.1016/j.brainres.2006.06.018. Epub 2006 Jul 11.

Schnurri-2 mutant mice are hypersensitive to stress and hyperactive

Affiliations

Schnurri-2 mutant mice are hypersensitive to stress and hyperactive

Tsuyoshi Takagi et al. Brain Res. .

Abstract

The bone morphogenetic protein (BMP)/transforming growth factor-beta (TGF-beta)/activin superfamily regulates development of the nervous system during embryogenesis and is also suggested to be involved in adult brain function. However, how BMP/TGF-beta/activin signals modulate neuronal function remains unknown. Schnurri is a transcription factor that contains two metal finger regions. Mammalian Shn-2 enters the nucleus from the cytoplasm in response to BMP-2 stimulation and plays an important role in BMP-dependent adipogenesis. To investigate whether mammalian Shn plays a role in adult brain function, we examined the behaviors of mutant mice lacking Shn-2 (Shn-2(-/-)). Shn-2(-/-) mice exhibited hypersensitivity to stress accompanied by anxiety-like behavior. Consistent with this, stress-induced corticosterone levels were significantly higher in Shn-2(-/-) mice compared to wild-type controls. Interestingly, Shn-2(-/-) mice were more active than wild-type mice in a familiar environment. The basal and stress-induced expression levels of the immediate early genes, including c-Fos, were decreased in Shn-2(-/-) mice compared to wild-type mice. Thus, Shn-2 plays a critical role in locomotion and anxiety-like behavior.

PubMed Disclaimer

Publication types

MeSH terms