Role of the neurogranin concentrated in spines in the induction of long-term potentiation
- PMID: 16837580
- PMCID: PMC6674191
- DOI: 10.1523/JNEUROSCI.0729-06.2006
Role of the neurogranin concentrated in spines in the induction of long-term potentiation
Abstract
Synaptic plasticity in CA1 hippocampal neurons depends on Ca2+ elevation and the resulting activation of calmodulin-dependent enzymes. Induction of long-term depression (LTD) depends on calcineurin, whereas long-term potentiation (LTP) depends on Ca2+/calmodulin-dependent protein kinase II (CaMKII). The concentration of calmodulin in neurons is considerably less than the total concentration of the apocalmodulin-binding proteins neurogranin and GAP-43, resulting in a low level of free calmodulin in the resting state. Neurogranin is highly concentrated in dendritic spines. To elucidate the role of neurogranin in synaptic plasticity, we constructed a computational model with emphasis on the interaction of calmodulin with neurogranin, calcineurin, and CaMKII. The model shows how the Ca2+ transients that occur during LTD or LTP induction affect calmodulin and how the resulting activation of calcineurin and CaMKII affects AMPA receptor-mediated transmission. In the model, knockout of neurogranin strongly diminishes the LTP induced by a single 100 Hz, 1 s tetanus and slightly enhances LTD, in accord with experimental data. Our simulations show that exchange of calmodulin between a spine and its parent dendrite is limited. Therefore, inducing LTP with a short tetanus requires calmodulin stored in spines in the form of rapidly dissociating calmodulin-neurogranin complexes.
Figures








Similar articles
-
Neurogranin stimulates Ca2+/calmodulin-dependent kinase II by suppressing calcineurin activity at specific calcium spike frequencies.PLoS Comput Biol. 2020 Feb 12;16(2):e1006991. doi: 10.1371/journal.pcbi.1006991. eCollection 2020 Feb. PLoS Comput Biol. 2020. PMID: 32049957 Free PMC article.
-
Postsynaptic injection of CA2+/CaM induces synaptic potentiation requiring CaMKII and PKC activity.Neuron. 1995 Aug;15(2):443-52. doi: 10.1016/0896-6273(95)90048-9. Neuron. 1995. PMID: 7646896
-
Neurogranin enhances synaptic strength through its interaction with calmodulin.EMBO J. 2009 Oct 7;28(19):3027-39. doi: 10.1038/emboj.2009.236. Epub 2009 Aug 27. EMBO J. 2009. PMID: 19713936 Free PMC article.
-
CaMKII regulates the depalmitoylation and synaptic removal of the scaffold protein AKAP79/150 to mediate structural long-term depression.J Biol Chem. 2018 Feb 2;293(5):1551-1567. doi: 10.1074/jbc.M117.813808. Epub 2017 Dec 1. J Biol Chem. 2018. PMID: 29196604 Free PMC article. Review.
-
RC3/neurogranin, a postsynaptic calpacitin for setting the response threshold to calcium influxes.Mol Neurobiol. 1997 Oct;15(2):131-63. doi: 10.1007/BF02740632. Mol Neurobiol. 1997. PMID: 9396008 Review.
Cited by
-
Neurogranin and Neuronal Pentraxin Receptor as Synaptic Dysfunction Biomarkers in Alzheimer's Disease.J Clin Med. 2021 Oct 2;10(19):4575. doi: 10.3390/jcm10194575. J Clin Med. 2021. PMID: 34640593 Free PMC article.
-
Sequestration of CaMKII in dendritic spines in silico.J Comput Neurosci. 2011 Nov;31(3):581-94. doi: 10.1007/s10827-011-0323-2. Epub 2011 Apr 14. J Comput Neurosci. 2011. PMID: 21491127
-
Neurogranin Regulates Metaplasticity.Front Mol Neurosci. 2020 Jan 24;12:322. doi: 10.3389/fnmol.2019.00322. eCollection 2019. Front Mol Neurosci. 2020. PMID: 32038160 Free PMC article.
-
Differential Regulation of PI(4,5)P2 Sensitivity of Kv7.2 and Kv7.3 Channels by Calmodulin.Front Mol Neurosci. 2017 May 1;10:117. doi: 10.3389/fnmol.2017.00117. eCollection 2017. Front Mol Neurosci. 2017. PMID: 28507506 Free PMC article.
-
Real-time single-molecule imaging of CaMKII-calmodulin interactions.Biophys J. 2024 Apr 2;123(7):824-838. doi: 10.1016/j.bpj.2024.02.021. Epub 2024 Feb 28. Biophys J. 2024. PMID: 38414237 Free PMC article.
References
-
- Aigner L, Arber S, Kapfhammer JP, Laux T, Schneider C, Botteri F, Brenner HR, Caroni P (1995). Overexpression of the neural growth-associated protein Gap-43 induces nerve sprouting in the adult nervous system of transgenic mice. Cell 83:269–278. - PubMed
-
- Alexander KA, Cimler BM, Meier KE, Storm DR (1987). Regulation of calmodulin binding to P-57—a neurospecific calmodulin binding protein. J Biol Chem 262:6108–6113. - PubMed
-
- Baudier J, Deloulme JC, Vandorsselaer A, Black D, Matthes HWD (1991). Purification and characterization of a brain-specific protein kinase C substrate, neurogranin (P17)—identification of a consensus amino-acid sequence between neurogranin and neuromodulin (GAP43) that corresponds to the protein kinase C phosphorylation site and the calmodulin-binding domain. J Biol Chem 266:229–237. - PubMed
-
- Beattie EC, Carroll RC, Yu X, Morishita W, Yasuda H, von Zastrow M, Malenka RC (2000). Regulation of AMPA receptor endocytosis by a signaling mechanism shared with LTD. Nat Neurosci 3:1291–1300. - PubMed
-
- Bhalla US, Iyengar R (1999). Emergent properties of networks of biological signaling pathways. Science 283:381–387. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous