Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2006 Jul;75(1):70-7.

Population dynamics of an endogenous meiotic drive system in Aedes aegypti in Trinidad

Affiliations
  • PMID: 16837711
Comparative Study

Population dynamics of an endogenous meiotic drive system in Aedes aegypti in Trinidad

Sung-Jae Cha et al. Am J Trop Med Hyg. 2006 Jul.

Abstract

An endogenous meiotic drive system was previously reported to be segregating in the yellow fever mosquito Aedes aegypti L. (Diptera: Culicidae) population in Trinidad. The meiotic driver (M(D)) is tightly linked to the male determining locus and selectively targets sensitive responders linked to the female determining allele, causing fragmentation of female gametes. This results in highly male-biased progeny. The M(D) system was initially studied as a genetic tool for population control with limited success, but recently interest has focused on its potential for population replacement. This study examines the distribution and dynamics of the M(D) system in Trinidad natural populations. We obtained ovitrap samples from seven geographically distinct regions and determined the allele frequencies of the driver (M(D)) and sensitive (m(s)) versus insensitive (m(i)) responders, respectively. Frequencies of the M(D) allele ranged from 0.1 to 0.5 and were low at the two major port cities, Port of Spain and San Fernando, suggesting the effects of frequent immigration by non-driving genotypes. Frequencies of the m(i) allele ranged from 0.4 to 0.7, suggesting the effects of strong selection by the driver. In addition, our results show that the driver and sensitivity of responders in the Trinidad populations are highly polymorphic. Continued studies of the dynamics of the M(D) system in natural populations are critical to considerations of its use in population replacement.

PubMed Disclaimer

Similar articles

Cited by

Publication types