Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Sep 1;64(4):1058-68.
doi: 10.1002/prot.21044.

A computational analysis of the binding affinities of FKBP12 inhibitors using the MM-PB/SA method

Affiliations

A computational analysis of the binding affinities of FKBP12 inhibitors using the MM-PB/SA method

Yong Xu et al. Proteins. .

Abstract

The FK506-binding proteins have been targets of pharmaceutical interests over years. We have studied the binding of a set of 12 nonimmunosuppressive small-molecule inhibitors to FKBP12 through molecular dynamics simulations. Each complex was subjected to 1-ns MD simulation conducted in an explicit solvent environment under constant temperature and pressure. The binding free energy of each complex was then computed by the MM-PB/SA method in the AMBER program. Our MM-PB/SA computation produced a good correlation between the experimentally determined and the computed binding free energies with a correlation coefficient (R(2)) of 0.93 and a standard deviation as low as 0.30 kcal/mol. The vibrational entropy term given by the normal mode analysis was found to be helpful for achieving this correlation. Moreover, an adjustment to one weight factor in the PB/SA model was essential to correct the absolute values of the final binding free energies to a reasonable range. A head-to-head comparison of our MM-PB/SA model with a previously reported Linear Response Approximation (LRA) model suggested that the MM-PB/SA method is more robust in binding affinity prediction for this class of compounds.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources