Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006;8(4):R35.
doi: 10.1186/bcr1523.

Anti-erbB2 treatment induces cardiotoxicity by interfering with cell survival pathways

Affiliations

Anti-erbB2 treatment induces cardiotoxicity by interfering with cell survival pathways

Thea Pugatsch et al. Breast Cancer Res. 2006.

Abstract

Introduction: Cardiac dysfunction is among the serious side effects of therapy with recombinant humanized anti-erbB2 monoclonal antibody. The antibody blocks ErbB-2, a receptor tyrosine kinase and co-receptor for other members of the ErbB and epidermal growth factor families, which is over-expressed on the surface of many malignant cells. ErbB-2 and its ligands neuregulin and ErbB-3/ErbB-4 are involved in survival and growth of cardiomyocytes in both postnatal and adult hearts, and therefore the drug may interrupt the correct functioning of the ErbB-2 pathway.

Methods: The effect of the rat-anti-erbB2 monoclonal antibody B-10 was studied in spontaneously beating primary myocyte cultures from rat neonatal hearts. Gene expression was determined by RT-PCR (reverse transcription polymerase chain reaction) and by rat stress-specific microarray analysis, protein levels by Western blot, cell contractility by video motion analysis, calcium transients by the FURA fluorescent method, and apoptosis using the TUNEL (terminal uridine nick-end labelling) assay.

Results: B-10 treatment induces significant changes in expression of 24 out of 207 stress genes analyzed using the microarray technique. Protein levels of ErbB-2, ErbB-3, ErbB-4 and neuregulin decreased after 1 day. However, both transcription and protein levels of ErbB-4 and gp130 increased several fold. Calreticulin and calsequestrin were overexpressed after three days, inducing a decrease in calcium transients, thereby influencing cell contractility. Apoptosis was induced in 20% cells after 24 hours.

Conclusion: Blocking ErbB-2 in cultured rat cardiomyocytes leads to changes that may influence the cell cycle and affects genes involved in heart functions. B-10 inhibits pro-survival pathways and reduces cellular contractility. Thus, it is conceivable that this process may impair the stress response of the heart.

PubMed Disclaimer

Figures

Figure 1
Figure 1
RT-PCR analysis of control and treated (B-10) cells. Primers used are described in Table 1. RT-PCR, reverse transcription polymerase chain reaction.
Figure 2
Figure 2
Western blot analysis of control and treated (B-10) cells after 24/72 hours.
Figure 3
Figure 3
Contraction, as assessed by percentage shortening. The values (mean ± standard deviation) are as follows: control 0.3037 ± 0.0096 and B-10 treatment 0.1842 ± 0.0205. P < 0.001.
Figure 4
Figure 4
Calcium transient analysis. The values (relative absorbance; mean ± standard deviation) are as follows: control 0.803 ± 0.04 and B-10 0.644 ± 0.04. P < 0.001.
Figure 5
Figure 5
TUNEL assay, 24 hours after addition of B-10 or doxorubicin. The first row shows untreated control cells. The second row shows doxorubicin (10 μmol/l) treated positive control cells. The third row shows B-10 treated cells. TUNEL, terminal uridine nick-end labeling.
Figure 6
Figure 6
Percentage of apoptotic cells 24 hours after addition of B-10 or doxorubicin. The TUNEL method was used to determine the percentage of apoptotic cells. The values (mean ± standard deviation) are as follows: control cells 2.35 ± 0.02%; doxorubicin treated cells 98 ± 0.09%; and B-10 treated cells 20.4 ± 0.09%.

Similar articles

Cited by

References

    1. Alimandi M, Romano A, Curia MC, Muraro R, Fedi P, Aaronson SA, Di Fiore PP, Kraus MH. Cooperative signaling of ErbB3 and ErbB2 in neoplastic transformation and human mammary carcinomas. Oncogene. 1995;10:1813–1821. - PubMed
    1. Chang H, Riese DJ, II, Gilbert W, Stern DF, McMahan UJ. Ligands for ErbB-family receptors encoded by a neuregulin-like gene. Nature. 1997;387:509–512. doi: 10.1038/387509a0. - DOI - PubMed
    1. Waterman H, Sabanai I, Geiger B, Yarden Y. Alternative intracellular routing of ErbB receptors may determine signaling potency. J Biol Chem. 1998;273:13819–13827. doi: 10.1074/jbc.273.22.13819. - DOI - PubMed
    1. Sundaresan S, Roberts PE, King KL, Sliwkowski MX, Mather JP. Biological response to ErbB ligands in nontransformed cell lines correlates with a specific pattern of receptor expression. Endocrinology. 1998;139:4756–4764. doi: 10.1210/en.139.12.4756. - DOI - PubMed
    1. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235:177–182. - PubMed

Publication types