Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2006 Apr;56(2):145-51.
doi: 10.2170/physiolsci.RP003205. Epub 2006 Apr 5.

Transverse stiffness of myofibrils of skeletal and cardiac muscles studied by atomic force microscopy

Affiliations
Free article
Comparative Study

Transverse stiffness of myofibrils of skeletal and cardiac muscles studied by atomic force microscopy

Nao Akiyama et al. J Physiol Sci. 2006 Apr.
Free article

Abstract

The transverse stiffness of single myofibrils of skeletal and cardiac muscles was examined by atomic force microscopy. The microscopic images of both skeletal and cardiac myofibrils in a rigor state showed periodical striation patterns separated by Z-bands, which is characteristic of striated muscle fibers. However, sarcomere patterns were hardly distinguishable in the stiffness distributions of the relaxed myofibrils of skeletal and cardiac muscles. Myofibrils in a rigor state were significantly stiff compared with those in a relaxed state, and in each state, cardiac myofibrils were significantly stiffer compared with skeletal myofibrils. By proteolytic digestions of sarcomere components of myofibrils, it was suggested that cardiac myofibrils are laterally stiffer than skeletal myofibrils because Z-bands, connectin (titin) filament networks, and other components of sarcomere structures for the former myofibrils are stronger than those for the latter.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources